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o Goal: Obtain estimation of uncertainty, i.e. a confidence interval for predictions made by the model,    
specifically for neural network regression.

o UQ Models:
• Homoscedastic:  - Gaussian noise model, no feature dependence (homogeneous noise)

- We only learn 𝑦 = 𝑓 𝑥 and estimate a uniform uncertainty 𝜎

• Heteroscedastic: - Gaussian noise model,  smooth feature dependence (heterogeneous noise)
- We  learn 𝑦 = 𝑓 𝑥 and 𝜎 𝑥 .

• Quantile:              - No explicit noise model, assumes smooth quantile functions
- We learn 𝑓'(𝑥) for 𝛼 = 0.1, 0.5, 0.9 (the 1st, 5th, and 9th deciles) with 𝑦 = 𝑓0.1(𝑥)

⇠i = yi � f↵(xi)
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o Lessons learned: A retrospective analysis of UQ estimates for drug response models.
- Calibration curves are beset with high uncertainty and do 

not provide reliable, local, information about uncertainty. 

- The  trend in the data can be used for calibration but it has 
very large uncertainty and cannot provide reliable local 
information for prediction and experiment design.

- The uncertainty of the uncertainty estimation is very large!

GDSC Data – Heteroscedastic - 10% dropout

Blue: Computed empirical relationship between predicted STD and error. 
Green: Smoothing of empirical relationship.
Red:      Range of monotonically increasing relationship. 



o Lessons learned: We designed and analyzed synthetic data sets for which we know both 
the response  𝑦 = 𝑓 𝑥 and the noise 𝜎 𝑥 .

- This is the only way in which any lessons could be learned.

- By design the response and uncertainty depend on the norm  ∥ 𝑥 ∥= ∑<67= 𝑥<2 of the feature vector 𝑥 ∈ ℝ=,

so that we can visualize the performance of the learning algorithms.
- Conceivably, this may bias our conclusions.



𝜎(𝑋)

The loss function couples two learning tasks 

𝑓 𝑋
learning column learning column

o Lessons learned:
• The response and the uncertainty can have different learning complexities

(the number of training-samples that we need in order to successfully
learn each target function).

• Heteroscedastic and quantile formulation with independent, or loosely 
coupled, prediction of mean and variance to allow for different regularization         
functions or even architecture for mean and variance outputs.

• We should implement a model that enables us to explore the tradeoff 
between these two complexities.

• This complicates the selection of hyperparameters.
• This complicates learning itself, since the learning rate of each target 

function is different.

true 𝑓(∥ 𝑥 ∥)

true 𝜎(∥ 𝑥 ∥)



o Lessons learned:
• Model bias is confused with variance (uncertainty): Very difficult to disentangle the two 

when we have only one measurement per observation point.
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• (A) Model is too complex and overfitting the data.
The estimated 𝜎(𝑥) is very small.

(A)

(B)

• (B) Model is too simple and biased.
The estimated 𝜎(𝑥) is large to accommodate bias.

• Cross-validation methods should help select the right
model complexity: Is this truly the case?

• Often, the bias is “local” and confuses the  validation 
error estimate and the correct selection of model 
complexity.



o Lessons learned: 
• While all models can learn an accurate estimation of response, the accurate estimation 

of uncertainty is very difficult.
• Model bias is confused with variance (uncertainty): Very difficult to disentangle the two 

when we have only one measurement per observation point.

• Heterogeneous  learning model 
• Learns well the response
• The uncertainty estimated is flat.

Training data Modeling performance 

• Simple heteroscedastic data
• dim X = 1 (feature space dimension)
• one, noisy measurement everywhere



• Quantile learning model.
• Learns well the response.
• The uncertainty estimated is very  good over a subset of the feature space.
• Subtle trade-off between bias (at small X values) and variance (noise).
• This trade-off is often local and hard to detect.

• Simple heteroscedastic data
• dim X = 1 (feature space dimension)
• one, noisy measurement everywhere

o Lessons learned: 
• The quantile model has best performance for estimating uncertainty.
• Model bias is confused with variance (uncertainty): Very difficult to disentangle the two 

when we have only one measurement per observation point.



o Lessons learned: 
• Learning response curves well is harder in high dimensional feature spaces, 

but learning uncertainty is even  harder.

- Simple heteroscedastic data
- dim X = 10 (feature space dimension)
- one, noisy measurement everywhere

Training data Modeling performance 

• Quantile learning model.
• Both response and uncertainty are hard to estimated. 
• Model bias at small X values is  confused for noise.



- Simple heteroscedastic data
- dim X = 10 (feature space dimension)
- 100 noisy measurements for for each 
training point with ∥ 𝑋 ∥∈ [15,20]

• Quantile learning model.
• Improved response and uncertainty estimates in region where 

multiple (100) replicates are introduced.
• Model bias at small X values is  confused for noise.
• Negative 𝜎(𝑋) for large X values  due to quantile inversion, i.e.

𝑓0.D 𝑥 < 𝑓0.7(𝑥)

o Lessons learned: 
• Introducing multiple measurements in a limited domain of the feature space (100 replicates for each 

training point with ∥ 𝑋 ∥∈ [15,20] improves estimation at a high experimental cost.
• There is a negative impact on response estimation elsewhere.
• The experimental cost for learning uncertainty is very large.



Training data Modeling performance 

- Hard heteroscedastic data
- dim X = 1 (feature space dimension)
- one, noisy measurement everywhere

• Heteroscedastic  learning model
• Flat uncertainty estimation
• Captures the correct scale of the 

uncertainty 

• Quantile learning model.
• Learns well the uncertainty.
• Large  error for large ∥ 𝑋 ∥ values

due to scarce training data



Hard heteroscedastic data
- dim X = 10 (feature space dimension)
- one, noisy measurement everywhere

• Quantile learning model.
• Better response and uncertainty estimates in region with 

higher density of training data.
• Model bias at small ∥ 𝑋 ∥ values is confused for noise.
• Negative 𝜎(𝑋) for large ∥ 𝑋 ∥ values due to quantile 

inversion, i.e.
𝑓0.D 𝑥 < 𝑓0.7(𝑥)

Training data Modeling performance 



o Lessons learned: 
• The current implementation of the models allows the response and sigma learning function spaces to have  

different complexities (reg_l2 params). Thus we explore the tradeoff between these two complexities: Can 
we detect bias?

• The quantile model exhibits quantile inversion in regions of the feature space with sparse training 
examples. This  can be used to detect  regions in feature space where  more measurements are needed.

• Alternatively, we should include ordering constraints in the loss function to prevent this from happening.

For large ∥ 𝑋 ∥ values we notice a quantile inversion effect,
i.e. 𝑓0.D 𝑥 < 𝑓0.7(𝑥), flags the region of uncertain uncertainty.



o Lessons learned: 
• It is very difficult to optimize these networks to learn uncertainty, while good  approximations 

to the response curve can be found for a large range of network (hyper)parameters.
• The model learns the response first (since there is direct information used for learning)

and stops improving the learning of uncertainty (for which learning information is not
usually available).

o New learning strategies:
• We need improved learning strategies: For example, in a model with distinct learning

columns for  𝑓 𝑋 and 𝜎(𝑋) we can alternate between learning 𝑓 𝑋 while weights for
learning 𝜎(𝑋) are frozen, and vice versa. What is a good learning strategy?

o Concluding remarks:
• Accurate estimation of uncertainty remains a difficult, open problem.
• The trade-off between bias and variance is often local and difficult to detect.
• The experimental cost for learning uncertainty is very large.
• Improved uncertainty estimation impacts the learning of a good response model, and vice versa.

The two learning objectives may be competing against each other. 
• With so much data needed to learn well uncertainty, we may just learn uncertainty as an independent 

learning problem.
• How to approach uncertainty estimation when this is not the case?


